Let
\(x \in {\cal R}(A)^\perp\text{.}\) Then for
\(y\in \R^n\text{,}\) \(Ay\in {\cal R}(A)\text{.}\) Hence
\(0=(Ay)^Tx=y^TA^Tx\text{.}\) This implies
\(A^Tx=0\text{.}\) Hence
\(x\in {\cal N}(A^T)\text{.}\) That is,
\({\cal R}(A)^\perp\subseteq {\cal N}(A^T)\text{.}\)
Next let
\(x\in {\cal N}(A^T)\) then
\((Ay)^Tx=y^TA^Tx=0\) for all
\(y\text{.}\) Hence
\(x\in {\cal R}(A)^\perp\text{.}\) That is,
\({\cal N}(A^T) \subseteq {\cal R}(A)^\perp\text{.}\) Hence
\({\cal R}(A)^\perp={\cal N}(A^T)\text{.}\)
Replacing \(A\) by \(A^T\text{,}\) in (1), we get
\begin{equation*}
{{\cal R}(A^T)}^\perp={\cal N}(A).
\end{equation*}
Hence
\begin{equation*}
{{\cal N}(A)}^\perp={{{\cal R}(A^T)}^\perp}^\perp={\cal R}(A^T).
\end{equation*}
We write rows of \(A\) and \(r_1,\ldots r_m\) and columns of \(A\) as \(a_1,\ldots a_n\text{.}\) Then for any \(x\ijn \R^n\text{,}\) we have
\begin{equation*}
Ax=x_1a_1+x_2a_2+\cdots+x_na_n=
\begin{bmatrix} r_1\cdot x\\r_2\cdot a\\\vdots \\r_m\cdot x\end{bmatrix}.
\end{equation*}
Hence if \(Ax=0\text{,}\) then \(r_i\cdot x=0\) for all \(i\text{.}\) This implies \(x\in {\rm Row}(A)^\perp\text{.}\) That is \({\rm null}(A)\subset {\rm Row}(A)^\perp \text{.}\)
If
\(y\in {\rm Row}(A)^\perp\text{,}\) then
\(r_i\cdot y=0\) for all
\(i\text{.}\) Hence
\(Ay=0\text{.}\) This implies
\(y\in {\rm null}(A)\text{.}\) That is,
\({\rm Row}(A)^\perp\subset {\rm null}(A)\text{.}\) Hence
\({\rm Row}(A)^\perp = {\rm null}(A)\text{.}\)