Skip to main content

Section 5.2 Diagonalization

Definition 5.2.1.

A matrix \(A\) is said to be diagonalizable if there exists a non singular matrix \(P\) such that \(P^{-1}AP\) is a diagonal matrix. That is, \(A\) is similar to a diagonal matrix.

Example 5.2.2.

Let \(A=\begin{pmatrix}1\amp 2\amp -2\\1\amp 1\amp 1\\1\amp 3\amp -1 \end{pmatrix}\) as in Example 5.1.9. Define \(P=\begin{pmatrix}1\amp 0\amp 8/7\\-1\amp 1\amp -5/7\\-1\amp 1\amp 1 \end{pmatrix}\text{,}\) whose columns are eigenvectors of \(A\text{.}\)
Check that \(\det(P)=\dfrac{12}{7}\) and \(\text{ adj } (P)=\begin{pmatrix}12/7 \amp 8/7 \amp -8/7\\12/7 \amp 15/7\amp -3/7\\0 \amp -1 \amp 1 \end{pmatrix}\text{.}\) Hence \(P^{-1}=\begin{pmatrix}1\amp 2/3 \amp -2/3\\1\amp 5/4\amp -1/4\\0\amp -7/4\amp 7/4 \end{pmatrix}\)
Then it is easy to check that \(P^{-1}AP=\begin{pmatrix}1\amp 0\amp 0\\0\amp 2\amp 0\\0\amp 0\amp -2 \end{pmatrix}\text{.}\)
In this case we can find any power of \(A\) quite easily. For example \(A^n=P^{-1}\begin{pmatrix}1\amp 0\amp 0\\0\amp 2^n\amp 0\\0\amp 0\amp (-2)^n \end{pmatrix} P\text{.}\)

Example 5.2.3.

Let \(A=\begin{pmatrix}1 \amp 1\\0 \amp 1 \end{pmatrix}\text{.}\) Then 1 is a repeated eigenvalue of \(A\) with eigenvector \(\begin{pmatrix}1\\ 0 \end{pmatrix}\text{.}\) It is easuy to see that \(A\) is non diagonalizable.

Checkpoint 5.2.4.

If \(A=[a_{ij}]\) has \(n\) distinct eigenvalues then \(A\) is diagonalizable. In this case, one can define \(P\) where columns of \(P\) are \(n\) eigenvectors of \(A\text{.}\)

Proof.

Let \(A\) be diagonalizable, and that there exists a non singular matrix \(P\) such that
\begin{equation} P^{-1}AP=D=\diag(\lambda_1,\ldots,\lambda_n)\tag{5.2.1} \end{equation}
Let us write \(P=[P_1,\ldots,P_n]\) where \(P_j\) is the \(j\)-th column of \(P\text{.}\) Then Eq. (5.2.1) implies
\begin{equation*} AP=P\diag(\lambda_1,\ldots,\lambda_n) \end{equation*}
This implies
\begin{equation*} [AP_1,AP_2,\ldots,AP_n]=[\lambda_1P_1,\lambda_2P_2,\ldots,\lambda_nP_n] \end{equation*}
Equivalently \(AP_i=\lambda_iP_i\) for \(1\leq i\leq n\text{.}\) That is same as saying columns of \(P\) are eigenvectors of \(A\) with respect to eigenvalue \(\lambda_i\text{.}\) This implies \(A\) has \(n\) linearly eigenvectors, namely columns of \(P\text{.}\)
Conversely, let \(A\) have \(n\) linearly independent eigenvectors \(v_1, \ldots, v_n\) and that \(Av_j=\lambda_jv_j\text{.}\) Define \(P:=[v_1,v_2\ldots,v_n]\) and \(D:=\diag(\lambda_1,\ldots,\lambda_n)\text{.}\) Then
\begin{equation*} AP=[Av_1,Av_2,\ldots,Av_n]=[\lambda_1v_1,\lambda_2v_2,\ldots,\lambda_nv_n]=PD\text{.} \end{equation*}
Hence \(P^{-1}AP=D\text{.}\) Note that \(P\) has rank \(n\text{,}\) which implies \(P\) is invertible.

Example 5.2.7.

Let \(A\) be a \(3\times 3\) real matrix with eigenvalues \(\lambda_1=2,\lambda_2=1,\lambda_3=-1\) and corresponding eigenvectors \(v_1=\left(1,\,\frac{1}{3},\,-\frac{1}{3}\right), v_2=\left(1,\,0,\,-\frac{1}{3}\right), v_3=\left(1,\,\frac{1}{2},\,-\frac{1}{2}\right)\) respectively. Then we have \(P=[v_1~v_2~v_3]=\left(\begin{array}{rrr} 1 \amp 1 \amp 1 \\ \frac{1}{3} \amp 0 \amp \frac{1}{2} \\ -\frac{1}{3} \amp -\frac{1}{3} \amp -\frac{1}{2} \end{array} \right)\text{.}\) \(P^{-1}AP=\left(\begin{array}{rrr} 2 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \\ 0 \amp 0 \amp -1 \end{array} \right)\text{.}\) Hence \(A = P\left(\begin{array}{rrr} 2 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \\ 0 \amp 0 \amp -1 \end{array} \right)P^{-1}\text{.}\) It is easy to see that \(P^{-1}=\left(\begin{array}{rrr} 3 \amp 3 \amp 9 \\ 0 \amp -3 \amp -3 \\ -2 \amp 0 \amp -6 \end{array} \right)\text{.}\)
Hence
\begin{align*} A =\amp \left(\begin{array}{rrr} 1 \amp 1 \amp 1 \\ \frac{1}{3} \amp 0 \amp \frac{1}{2} \\ -\frac{1}{3} \amp -\frac{1}{3} \amp -\frac{1}{2} \end{array} \right) \begin{pmatrix}2\amp 0 \amp 0\\0 \amp 1 \amp 0\\ 0 \amp 0 \amp 1 \end{pmatrix} \left(\begin{array}{rrr} 3 \amp 3 \amp 9 \\ 0 \amp -3 \amp -3 \\ -2 \amp 0 \amp -6 \end{array} \right)\\ =\amp \left(\begin{array}{rrr} 8 \amp 3 \amp 21 \\ 3 \amp 2 \amp 9 \\ -3 \amp -1 \amp -8 \end{array} \right)\text{.} \end{align*}

Example 5.2.8.

Let \(A=\begin{pmatrix}-1\amp -1\amp -2\\8\amp -11\amp -8\\-10\amp 11\amp 7 \end{pmatrix}\) and \(B=\begin{pmatrix}1\amp -4\amp -4\\8\amp -11\amp -8\\-8\amp 8\amp 5 \end{pmatrix}\text{.}\)
It is easy to check that \(A\) and \(B\) have same characteristic polynomial \(\lambda^3+5\lambda^2+3\lambda-9=(\lambda-1)(\lambda+3)^2\text{.}\) Also We can show that \(A\) has only one linearly independent eigenvectors corresponding to eigenvalue \(-3\text{.}\) This implies \(A\) has only two eigenvectors and hence \(A\) is not diagonalizable.
Similarly, We can show that \(B\) has two linearly independent eigenvectors corresponding to eigenvalue \(-3\text{.}\) This implies \(B\) has three eigenvectors and hence \(B\) is diagonalizable.
We mention another criteria of diagonalizability without proof.