Let \(A\) be diagonalizable, and that there exists a non singular matrix \(P\) such that
\begin{equation}
P^{-1}AP=D=\diag(\lambda_1,\ldots,\lambda_n)\tag{5.2.1}
\end{equation}
Let us write
\(P=[P_1,\ldots,P_n]\) where
\(P_j\) is the
\(j\)-th column of
\(P\text{.}\) Then Eq.
(5.2.1) implies
\begin{equation*}
AP=P\diag(\lambda_1,\ldots,\lambda_n)
\end{equation*}
This implies
\begin{equation*}
[AP_1,AP_2,\ldots,AP_n]=[\lambda_1P_1,\lambda_2P_2,\ldots,\lambda_nP_n]
\end{equation*}
Equivalently \(AP_i=\lambda_iP_i\) for \(1\leq i\leq n\text{.}\) That is same as saying columns of \(P\) are eigenvectors of \(A\) with respect to eigenvalue \(\lambda_i\text{.}\) This implies \(A\) has \(n\) linearly eigenvectors, namely columns of \(P\text{.}\)
Conversely, let \(A\) have \(n\) linearly independent eigenvectors \(v_1, \ldots,
v_n\) and that \(Av_j=\lambda_jv_j\text{.}\) Define \(P:=[v_1,v_2\ldots,v_n]\) and \(D:=\diag(\lambda_1,\ldots,\lambda_n)\text{.}\) Then
\begin{equation*}
AP=[Av_1,Av_2,\ldots,Av_n]=[\lambda_1v_1,\lambda_2v_2,\ldots,\lambda_nv_n]=PD\text{.}
\end{equation*}
Hence \(P^{-1}AP=D\text{.}\) Note that \(P\) has rank \(n\text{,}\) which implies \(P\) is invertible.