\begin{equation*}
[A, I]=
\begin{pmatrix}1\amp 0\amp 2\amp |\amp 1\amp 0\amp 0\\2\amp -1\amp 3\amp
|\amp 0\amp 1\amp 0\\4\amp 1\amp 8\amp |\amp 0\amp 0\amp 1\end{pmatrix}
\end{equation*}
\begin{equation*}
\xrightarrow{ \begin{array}{c} R_2\to R_2-2R_1 \\ R_3\to R_3-4R_1
\end{array}}
\begin{pmatrix}1\amp 0\amp 2\amp |\amp 1\amp 0\amp 0\\0\amp -1\amp -1\amp
|\amp -2\amp 1\amp 0\\0\amp 1\amp 0\amp |\amp -4\amp -0\amp 1\end{pmatrix}
\end{equation*}
\begin{equation*}
\xrightarrow{ \begin{array}{c} R_2\to (-1)R_2 \\R_3\to R_3-R_2 \\
\end{array}}
\begin{pmatrix}1\amp 0\amp 2\amp |\amp 1\amp 0\amp 0\\0\amp 1\amp 1\amp
|\amp 2\amp -11\amp 0\\0\amp 0\amp -1\amp |\amp -6\amp 1\amp 1\end{pmatrix}
\end{equation*}
\begin{equation*}
\xrightarrow{\begin{array}{c} R_3\to (-1)R_3\end{array}}
\begin{pmatrix}1\amp 0\amp 2\amp |\amp 1\amp 0\amp 0\\0\amp 1\amp 1\amp
|\amp 2\amp -11\amp 0\\0\amp 0\amp 1\amp |\amp 6\amp -11\amp -11\end{pmatrix}
\end{equation*}
\begin{equation*}
\xrightarrow{ \begin{array}{c} R_2\to R_2-R_3 \\R_1\to R_1-2R_3\end{array}}
\begin{pmatrix}1\amp 0\amp 1\amp |\amp -11\amp 2\amp 2\\0\amp 1\amp 0\amp |\amp -4\amp 0\amp 1\\0\amp 0\amp 1\amp |\amp 6\amp -1\amp -1\end{pmatrix}
\end{equation*}
Hence
\begin{equation*}
A^{-1}=\begin{pmatrix}-11 \amp 2 \amp 2\\-4 \amp 0 \amp 1\\6 \amp -1 \amp -1
\end{pmatrix}
\end{equation*}
Let us solve the abobe problem step by step in Sage. Sage has inbuilt functions to do elementary row operations.
Sage can directly find the inverse of a matrix.