Consider \(v_1,\ldots, v_8\) in \(\R^5\text{,}\) where
\begin{equation*}
\begin{split} v_1=(2, -3, 4, -5, -2), v_2=(-6, 9, -12, 15, -6), v_3=(3, -2, 7, -9, 1),\\ v_4=(2, -8, 2, -2, 6),
v_5=(-1, 1, 2, 1, -3), v_6=(0, -3, -18, 9, 12), \\
v_7=(1, 0, -2, 3, -2), v_8=(2, -1, 1, -9, 7) \end{split}
\end{equation*}
We wish to find a subset of \(\{v_1,\ldots,
v_8\}\) which is a basis of \(\R^5\text{.}\) We can achieve this by applying RREF to the column matrix \(\begin{bmatrix}v_1\amp v_2\amp \cdots \amp v_8 \end{bmatrix}\text{.}\) Thus
\begin{align*}
\left[\begin{array}{rrrrrrrr} 2 \amp -6 \amp 3 \amp 2 \amp -1 \amp 0 \amp 1 \amp 2 \\
-3 \amp 9 \amp -2 \amp -8 \amp 1 \amp -3 \amp 0 \amp -1 \\
4 \amp -12 \amp 7 \amp 2 \amp 2 \amp -18 \amp -2 \amp 1 \\
-5 \amp 15 \amp -9 \amp -2 \amp 1 \amp 9 \amp 3 \amp -9 \\
-2 \amp -6 \amp 1 \amp 6 \amp -3 \amp 12 \amp -2 \amp 7 \end{array}\right]\\
\xrightarrow{RREF}
\left[\begin{array}{rrrrrrrr}
1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \\
0 \amp 1 \amp 0 \amp -\frac{4}{3} \amp 0 \amp -\frac{1}{3} \amp 0 \amp \frac{1}{3} \\
0 \amp 0 \amp 1 \amp -2 \amp 0 \amp -2 \amp 0 \amp 1 \\
0 \amp 0 \amp 0 \amp 0 \amp 1 \amp -4 \amp 0 \amp -2 \\
0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 0 \amp 1 \amp -1 \end{array} \right]
\end{align*}
Clearly pivot columns are 1, 2, 3, 5, 7. Hence \(\{v_1,v_2,v_3,v_5,v_7\}\) is basis of \(\R^5\text{.}\)