The above system is equivalent to \(AX=B\) where
\begin{equation*}
A=\begin{pmatrix}
2 \amp 1 \amp 3\\ 4 \amp 1 \amp 7 \\ -6 \amp -2 \amp -12
\end{pmatrix}, \quad
X=\begin{pmatrix}
x\\y\\z
\end{pmatrix}
\quad \text {and }
B=\begin{pmatrix}
-1\\5\\-2
\end{pmatrix}
\end{equation*}
First of all let us decompose \(A=LU\) using the elementary row operation.
\begin{align*}
A=\amp\begin{pmatrix}
2 \amp 1 \amp 3\\ 4 \amp 1 \amp 7 \\ -6 \amp -2 \amp -12
\end{pmatrix} \xrightarrow{R_2\to R_2-2R_1}
\begin{pmatrix}
2 \amp 1 \amp 3\\ 0 \amp -1 \amp 1 \\ -6 \amp -2 \amp -12
\end{pmatrix}\\
\amp =\begin{pmatrix}
1 \amp 0 \amp 0\\ -2 \amp 1 \amp 0 \\ 0 \amp 0 \amp 1
\end{pmatrix}A=E_1A \\
\amp \xrightarrow{R_3\to R_3+3R_1}
\begin{pmatrix}
2 \amp 1 \amp 3\\ 0 \amp -1 \amp 1 \\ 0 \amp 1 \amp -3
\end{pmatrix} \\
\amp =\begin{pmatrix}
1 \amp 0 \amp 0\\ 0 \amp 1 \amp 0 \\ 3 \amp 0 \amp 1
\end{pmatrix}E_1A=E_2E_1A\\
\amp \xrightarrow{R_3\to R_2+R_2}
\begin{pmatrix}
2 \amp 1 \amp 3\\ 0 \amp -1 \amp 1 \\ 0 \amp 0 \amp -2
\end{pmatrix}\\
= \amp\begin{pmatrix}
1 \amp 0 \amp 0\\ 0 \amp 1 \amp 0 \\ 0 \amp 1 \amp 1
\end{pmatrix}E_2E_1A=E_3E_2E_1A
\end{align*}
Note that
\begin{equation*}
E_1=
\begin{pmatrix}
1 \amp 0 \amp 0\\ -2 \amp 1 \amp 0 \\ 0 \amp 0 \amp 1
\end{pmatrix},
E_2=\begin{pmatrix}
1 \amp 0 \amp 0\\ 0 \amp 1 \amp 0 \\ 3 \amp 0 \amp 1
\end{pmatrix},
E_3=\begin{pmatrix}
1 \amp 0 \amp 0\\ 0 \amp 1 \amp 0 \\ 0 \amp 1 \amp 1
\end{pmatrix}
\end{equation*}
Their inverses are given by
\begin{equation*}
E^{-1}_1=
\begin{pmatrix}
1 \amp 0 \amp 0\\ 2 \amp 1 \amp 0 \\ 0 \amp 0 \amp 1
\end{pmatrix},
E^{-1}_2=\begin{pmatrix}
1 \amp 0 \amp 0\\ 0 \amp 1 \amp 0 \\ -3 \amp 0 \amp 1
\end{pmatrix},
E^{-1}_3=\begin{pmatrix}
1 \amp 0 \amp 0\\ 0 \amp 1 \amp 0 \\ 0 \amp -1 \amp 1
\end{pmatrix}
\end{equation*}
Thus
\begin{equation*}
L=E^{-1}_1E^{-1}_2E^{-1}_3=\begin{pmatrix}
1 \amp 0 \amp 0\\ 2 \amp 1 \amp 0 \\ -3 \amp -1 \amp 1
\end{pmatrix}
\end{equation*}
and
\begin{equation*}
A=LU=\begin{pmatrix}
1 \amp 0 \amp 0\\ 2 \amp 1 \amp 0 \\ -3 \amp -1 \amp 1
\end{pmatrix} \begin{pmatrix}
2 \amp 1 \amp 3\\ 0 \amp -1 \amp 1 \\ 0 \amp 0 \amp -2
\end{pmatrix}
\end{equation*}
Now the equation \(AX=B\) becomes \(LUX=B\text{.}\) Let \(UX=Y=\begin{pmatrix} u\\v\\w\end{pmatrix}\text{.}\) First we solve \(LY=B\text{.}\) That is
\begin{equation*}
\begin{pmatrix}
1 \amp 0 \amp 0\\ 2 \amp 1 \amp 0 \\ -3 \amp -1 \amp 1
\end{pmatrix} \begin{pmatrix} u\\v\\w\end{pmatrix}=\begin{pmatrix} -1\\5\\-2\end{pmatrix}
\end{equation*}
Solving the above system using the forward substitution we get \(u=-1, v=7, w=2\text{.}\) Now substituting the in equation \(UX=Y\) we get
\begin{equation*}
\begin{pmatrix}
2 \amp 1 \amp 3\\ 0 \amp -1 \amp 1 \\ 0 \amp 0 \amp -2
\end{pmatrix} \begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}-1\\7\\2\end{pmatrix}
\end{equation*}
Solving the above system by back substitution we get the required solution \(x=5, y=-8, z=-1\text{.}\)