Consider a linear map
\(T\colon \R^4\to \R^3\) defined in the
ExampleΒ 3.2.7. Consider a basis
\(\beta=\{u_1,u_2,u_3,u_4\}\) where
\begin{align*}
u_1=\left(1,-3,2,-1\right),\amp u_2=\left(0,1,0,1\right)\\
u_3=\left(-1,2,-1,-1\right),\amp u_4=\left(2,-8,4,-3\right)
\end{align*}
of \(\R^4\) and a basis
\begin{equation*}
\gamma = \left\{v_1=\left(-1,1,1\right), v_2=\left(3,1,3\right), v_3=\left(2,-1,1\right)\right\}
\end{equation*}
of
\(\R^3\text{.}\) From
ExampleΒ 3.2.7,
\(A=[T]_\beta^\gamma=\left[\begin{array}{rrrr} 3 \amp -\frac{3}{2} \amp \frac{7}{6} \amp \frac{43}{6} \\ 1 \amp \frac{1}{2} \amp -\frac{5}{6} \amp \frac{7}{6} \\ 1 \amp -1 \amp \frac{1}{3} \amp \frac{10}{3} \end{array} \right]\text{.}\) Let
\(\beta'=\{u_1',u_2',u_3',u_4'\}\) where
\begin{align*}
u_1'=\left(1,1,1,-1\right), \amp u_2'=\left(1,1,-1,1\right)\\
u_3'=\left(1,-1,1,1\right), u_4'=\left(-1,1,1,1\right)
\end{align*}
be another basis of \(\R^4\text{.}\) Let
\begin{equation*}
\gamma'=\{\left(0,1,1\right), \left(1,0,1\right), \left(1,1,0\right)\}
\end{equation*}
be another basis of \(\R^3\text{.}\) Then the matrix \(B=[T]_{\beta'}^{\gamma'}=\left[\begin{array}{rrrr} 6 \amp -2 \amp 0 \amp 0 \\ 2 \amp 0 \amp 2 \amp 0 \\ -1 \amp 1 \amp 1 \amp 1 \end{array} \right]\text{.}\)