Consider two bases \(\R^3\) \(\beta = \left\{\left(2,-1,3\right), \left(3,1,2\right), \left(1,1,1\right)\right\}\) and \(\gamma = \left\{\left(1,-1,1\right), \left(1,1,-1\right), \left(-1,1,1\right)\right\}
\text{.}\) Consider a vector \(x=(1,2,3)\text{.}\) We have
\begin{equation*}
A = \left(\begin{array}{rrr}
2 \amp 3 \amp 1 \\
-1 \amp 1 \amp 1 \\
3 \amp 2 \amp 1
\end{array}\right), B = \left(\begin{array}{rrr}
1 \amp 1 \amp -1 \\
-1 \amp 1 \amp 1 \\
1 \amp -1 \amp 1
\end{array}\right)
\end{equation*}
First we find \(x_\beta\) and \(x_\gamma\text{.}\)
\begin{equation*}
\left(\begin{array}{rrr|r}
2 \amp 3 \amp 1 \amp 1 \\
-1 \amp 1 \amp 1 \amp 2 \\
3 \amp 2 \amp 1 \amp 3
\end{array}\right)
\xrightarrow{RREF}
\left(\begin{array}{rrr|r}
1 \amp 0 \amp 0 \amp \frac{3}{5} \\
0 \amp 1 \amp 0 \amp -\frac{7}{5} \\
0 \amp 0 \amp 1 \amp 4
\end{array}\right)
\end{equation*}
\begin{equation*}
\implies x_\beta =\begin{pmatrix} 3/5\\7/5\\4\end{pmatrix}.
\end{equation*}
Similarly
\begin{equation*}
\left(\begin{array}{rrr|r}
1 \amp 1 \amp -1 \amp 1 \\
-1 \amp 1 \amp 1 \amp 2 \\
1 \amp -1 \amp 1 \amp 3
\end{array}\right)\xrightarrow{RREF}
\left(\begin{array}{rrr|r}
1 \amp 0 \amp 0 \amp 2 \\
0 \amp 1 \amp 0 \amp \frac{3}{2} \\
0 \amp 0 \amp 1 \amp \frac{5}{2}
\end{array}\right)
\end{equation*}
\begin{equation*}
\implies x_\gamma =\begin{pmatrix} 2\\3/2\\5/2\end{pmatrix}.
\end{equation*}
Now to find the transition matrix \([I]_\gamma^\beta\text{,}\) we have
\begin{equation*}
[A~|~B]\xrightarrow{RREF} \left(\begin{array}{rrr|rrr}
1 \amp 0 \amp 0 \amp \frac{2}{5} \amp -\frac{4}{5} \amp \frac{2}{5} \\
0 \amp 1 \amp 0 \amp \frac{2}{5} \amp \frac{6}{5} \amp -\frac{8}{5} \\
0 \amp 0 \amp 1 \amp -1 \amp -1 \amp 3
\end{array}\right)
\end{equation*}
\begin{equation*}
\implies [I]_\gamma^\beta =
\left(\begin{array}{rrr}
\frac{2}{5} \amp -\frac{4}{5} \amp \frac{2}{5} \\
\frac{2}{5} \amp \frac{6}{5} \amp -\frac{8}{5} \\
-1 \amp -1 \amp 3
\end{array}\right)
\end{equation*}
It is easy to verify that \(x_\beta = [I]_\gamma^\beta x_\gamma\text{.}\) Similarly to find the transition matrix \([I]_\beta\gamma\text{,}\) we have
\begin{equation*}
[B~|~A]\xrightarrow{RREF} \left(\begin{array}{rrr|rrr}
1 \amp 0 \amp 0 \amp \frac{5}{2} \amp \frac{5}{2} \amp 1 \\
0 \amp 1 \amp 0 \amp \frac{1}{2} \amp 2 \amp 1 \\
0 \amp 0 \amp 1 \amp 1 \amp \frac{3}{2} \amp 1
\end{array}\right)
\end{equation*}
\begin{equation*}
\implies [I]_\beta^\gamma =\left(\begin{array}{rrr}
\frac{5}{2} \amp \frac{5}{2} \amp 1 \\
\frac{1}{2} \amp 2 \amp 1 \\
1 \amp \frac{3}{2} \amp 1
\end{array}\right)
\end{equation*}
It is easy to verify that \(x_\gamma=[I]_\beta^\gamma x_\beta\text{.}\)