Example 5.3.1.
Consider a matrix \(A =\begin{pmatrix}1 \amp -1 \\1 \amp 1\end{pmatrix}\text{.}\) It is easy to see that the characteristic polynomila of \(A\) is \(\det{(x I-A)}=x^2-2x+2\) whose charateristic roots are \(\lambda_1=1+i, \lambda_2=1-i\text{.}\)
Let us find eigenvectors corresponding to the eigenvalue \(\lambda=1+i\text{.}\) It is natural to expect, eigenvectors will also be vectors with complex entries. Let \(v=\begin{pmatrix}z_1\\z_2\end{pmatrix}\) be an eigenvector corresponding to \(\lambda_1=1+i\text{.}\) Then
\begin{equation*}
\begin{pmatrix}1 \amp -1 \\1 \amp 1\end{pmatrix}\begin{pmatrix}z_1\\z_2\end{pmatrix}
= (1+i)\begin{pmatrix}z_1\\z_2\end{pmatrix}.
\end{equation*}
Solving the above equations, it is easy to see that \(z_2=-iz_1\text{.}\) Hence one of the solution can be taken as \(v_1 =\begin{pmatrix}1\\-i\end{pmatrix}\text{.}\)
Similarly, we can chech that an eigenvector corresponding to the eigenvalue \(v_2 =\begin{pmatrix}1\\i\end{pmatrix}\text{.}\)
Let us define
\begin{equation*}
P = [v_1~v_2]=\begin{pmatrix} 1 \amp 1 \\-i\amp i\end{pmatrix}.
\end{equation*}
Then
\begin{equation*}
P^{-1} =\begin{pmatrix} 1/2 \amp i/2 \\1/2\amp -i/2\end{pmatrix}
\end{equation*}
and
\begin{equation*}
P^{-1}AP =\begin{pmatrix} 1+i \amp 0\\0 \amp 1-i\end{pmatrix}.
\end{equation*}