Solution of all the problmes listed are easy verifications. Let us write a detailed proof of the last problem.
We need to show that \(L(S)=\R^3\text{,}\) that is, \(L(S)\subset \R^3\) and \(\R^3\subset L(S)\text{.}\) Let us define \(v_1:=(1,1,-1),v_2:=(1,2,3),v_3:=(3,2,1)\) for convenience. Clearly by, definition, \(L(S)\subset \R^3\text{.}\) To show \(\R^3\subset L(S)\text{,}\) we let \((a,b,c)\in \R^3\text{.}\) We need to find scalars, say \(x_1,x_2,x_3\in \R\) such that \((a,b,c)=x_1v_1+x_2v_2+x_3v_3\text{.}\) As a vector,
\begin{align*}
\begin{pmatrix} a\\b\\c\end{pmatrix} =\amp x_1\begin{pmatrix} 1\\1\\-1\end{pmatrix}+
x_2\begin{pmatrix} 1\\2\\3\end{pmatrix}+x_2\begin{pmatrix} 3\\2\\1\end{pmatrix}\\
=\amp \begin{pmatrix} 1 \amp 1 \amp 3\\1 \amp 2 \amp 2\\-1 \amp 3 \amp 1\end{pmatrix}\begin{pmatrix} x_1\\x_2\\x_3\end{pmatrix}=Ax\text{.}
\end{align*}
It is easy to check that the above system has a unique solution as rank of \(A\) is 3 (This can be easily verified by Sage). Hence \((a,b,c>\in \R^3\) and hence \(\R^3\subset L(S)\text{.}\) Hence we have \(L(S)=\R^3\text{.}\)