Skip to main content

Section 1.4 Rank of Matrices

Definition 1.4.1.

Let \(A\) be an \(m \times n\) matrix. Delete any \(m-k\) rows and \(n-l\) columns of \(A\text{.}\) The resulting matrix is called a \(k\times l\) sub-matrix of \(A\text{.}\) If \(k = l\text{,}\) then it is called a square sub-matrix of \(A\) of order \(k\text{.}\)

Definition 1.4.2.

The rank of an \(m \times n\) matrix \(A\) is the order of the largest square sub-matrix of \(A\) whose determinant is non-zero. We denote the rank of a matrix \(A\) by \(r(A)\text{.}\)

Example 1.4.3.

Determine the rank of \(A= \begin{pmatrix} 1 \amp 1 \amp 1 \\ 2 \amp 3 \amp 4 \\ 4 \amp 5 \amp 6 \\ \end{pmatrix}\text{.}\)
Solution.
We can see that \(\mid A\mid = 0\text{.}\) Hence \(r(A) \leq 2\text{.}\) Now we look for the square sub-matrix of \(A\) of order 2 whose determinant is non-zero. Consider the square sub-matrix \(B= \begin{pmatrix} 1\amp 1 \\ 2\amp 3 \\ \end{pmatrix}\text{,}\) \(\mid B\mid = 1\text{.}\) Hence \(r(A) = 2\text{.}\)

Observation 1.4.4.

We list the following results without proof.
  1. An \(m \times n\) matrix is of rank 0 if and only it is a zero matrix.
  2. An \(n \times n\) square matrix \(A\) has rank \(n\) if and only if \(|A| \neq 0\text{.}\)
  3. An \(n \times n\) square matrix \(A\) has rank strictly less than \(n\) if and only if \(|A| = 0\text{.}\)
  4. For an \(m \times n\) matrix \(A\text{,}\) rank of \(A \leq \min (m, n).\)
  5. The rank of a matrix is not affected if we insert zero column or a zero row (of appropriate size) to it.
  6. If \(A\) is an \(m \times n\) matrix, then \(r(A) = r(A^T)\text{,}\) where \(A^T\) is the transpose of\(A\text{.}\)

Example 1.4.6.

Let us find the ranl of \(A=\begin{bmatrix}1 \amp -2\amp 0\amp 3\amp -4\\3\amp 2\amp 8\amp 1\amp 4\\2\amp 3\amp 7\amp 2\amp 3\\-1\amp 2\amp 0\amp 4\amp -3\end{bmatrix}\text{.}\)
Solution.
\begin{equation*} A=\begin{bmatrix}1 \amp -2\amp 0\amp 3\amp -4\\3\amp 2\amp 8\amp 1\amp 4\\2\amp 3\amp 7\amp 2\amp 3\\-1\amp 2\amp 0\amp 4\amp -3\end{bmatrix}\overrightarrow{\text{Row echelon form}}\begin{bmatrix}1 \amp 0\amp 2\amp 0\amp 0\\0\amp 1\amp 1\amp 0\amp 1\\0\amp 0\amp 0\amp 1\amp -1\\0\amp 0\amp 0\amp 0\amp 0\end{bmatrix}\text{.} \end{equation*}
Hence \(r(A)=3\text{.}\)

Example 1.4.7.

Consider a matrix \(\begin{bmatrix} 1 \amp 1 \amp 2 \amp a^2\\1 \amp 1-a \amp 2\amp 0 \\2 \amp 2-a \amp 6-a \amp 4\end{bmatrix}\text{.}\) Find the rank of the matrix.
Solution.
Let us apply elementary row operations of \(A\text{.}\) We have
\begin{align*} \begin{bmatrix} 1 \amp 1 \amp 2 \amp a^2\\1 \amp 1-a\amp 2\amp 0 \\2 \amp 2-a \amp 6-a \amp 4\end{bmatrix} \amp\xrightarrow{ \begin{array}{c} R_2-R_1 \\ R_3-2R_1 \\ \end{array}} \begin{pmatrix} 1\amp 2 \amp 2 \amp a^2 \\ 0\amp -a \amp 0 \amp -a^2 \\ 0\amp -a \amp 2-a \amp 4-2a^2 \\ \end{pmatrix} \\ \amp \xrightarrow{ \begin{array}{c} R_3-R_2 \\ \end{array}} \begin{pmatrix} 1\amp 2 \amp 2 \amp a^2 \\ 0\amp -a \amp 0 \amp -a^2 \\ 0\amp 0 \amp 2-a \amp 4-a^2 \\ \end{pmatrix}\\ \amp \xrightarrow{ \begin{array}{c} R_3-R_2 \\ \end{array}} \begin{pmatrix} 1\amp 2 \amp 2 \amp a^2 \\ 0\amp 1 \amp 0 \amp a \\ 0\amp 0 \amp 1 \amp 2+a \\ \end{pmatrix} \quad \text{ if } a\neq 0, 2. \end{align*}
Clearly the rank of \(A\) is 3 if \(a\neq 0, 2\text{.}\) If \(a=0\) or \(a=2\text{,}\) then it is easy to check that rank of \(A\) is 2.

Example 1.4.11.

` Consider the Example~Example 1.3.6.
\begin{align*} \begin{pmatrix} 1\amp 2 \amp 4 \amp | \amp 3 \\ 1\amp 0 \amp 2 \amp | \amp 0 \\ 2\amp 4 \amp 1 \amp | \amp 3 \\ \end{pmatrix} \amp \xrightarrow{ \begin{array}{c} RREF \end{array}} \begin{pmatrix} 1\amp 2 \amp 4 \amp | \amp 3 \\ 0\amp 1 \amp 1 \amp | \amp 3/2 \\ 0\amp 0 \amp 1 \amp | \amp 3/7 \\ \end{pmatrix} \end{align*}
Thus we have \(r(A)=r(A^*)=3\text{,}\) hence this system has a unique solution.

Example 1.4.12.

` Let us consider the system \(AX=B\) where \(A=\begin{bmatrix}1 \amp -2\amp 0\amp 3\\3\amp 2\amp 8\amp 1\\2\amp 3\amp 7\amp 2\\-1\amp 2\amp 0\amp 4\end{bmatrix}\quad B=\begin{bmatrix}-4\\4\\3\\-3\end{bmatrix}\quad X=\begin{bmatrix}x_1\\x_2\\x_3\\x_4\end{bmatrix}.\)
Solution.
\begin{align*} A^*=\begin{bmatrix} 1 \amp -2\amp 0\amp 3\amp |\amp -4\\ 3\amp 2\amp 8\amp 1\amp |\amp 4\\2 \amp 3\amp 7\amp 2\amp |\amp 3\\ -1\amp 2\amp 0\amp 4\amp |\amp -3 \end{bmatrix} \amp \overrightarrow{\text{RREF}} \begin{bmatrix} 1 \amp 0\amp 2\amp 0\amp |\amp 1\\ 0\amp 1\amp 1\amp 0\amp |\amp 1\\ 0\amp 0\amp 0\amp 1\amp |\amp -1\\ 0\amp 0\amp 0\amp 0\amp |\amp 0 \end{bmatrix} \end{align*}
Clearly \(r(A)=r(A^*)=3\lt4\text{,}\) hence this system has infinitely many solutions.

Example 1.4.13.

Consider the system of linear equations \(Ax=b\text{,}\) where
\begin{equation*} \begin{pmatrix} 1 \amp -2 \amp 2 \amp 3 \\ 3 \amp 2 \amp -1 \amp 5 \\ -2 \amp 0 \amp 3 \amp 4 \\ 13 \amp 2 \amp -9 \amp 1 \end{pmatrix}, \text{ and } b= \begin{pmatrix} 5 \\ -7 \\ 8 \\ 11 \end{pmatrix} \end{equation*}
Solution.
\begin{equation*} \left(\begin{array}{rrrr|r} 1 \amp -2 \amp 2 \amp 3 \amp 5 \\ 3 \amp 2 \amp -1 \amp 5 \amp -7 \\ -2 \amp 0 \amp 3 \amp 4 \amp 8 \\ 13 \amp 2 \amp -9 \amp 1 \amp 11 \end{array}\right) \overrightarrow{\text{RREF}} \left(\begin{array}{rrrr|r} 1 \amp 0 \amp 0 \amp \frac{10}{7} \amp 0 \\ 0 \amp 1 \amp 0 \amp \frac{3}{2} \amp 0 \\ 0 \amp 0 \amp 1 \amp \frac{16}{7} \amp 0 \\ 0 \amp 0 \amp 0 \amp 0 \amp 1 \end{array}\right) \end{equation*}
Clearly \(r(A)=3\) but \(r(A^*=4\text{.}\) Hence the system does not have a solution.