Example 4.6.1. Vector space \(\mathbb{Q}^6\).
Let us define the vector space \(\mathbb{Q}^6\) and explore the various concepts in Sage. Define 5 vectors \(v_1=\left(1,\,-1,\,2,\,3,\,1,\,4\right)
\text{,}\) \(v_2=(\left(2,\,1,\,0,\,2,\,-3,\,1\right),)
\text{,}\) \(v_3=(\left(-4,\,-5,\,4,\,0,\,11,\,5\right),)
\text{,}\) \(v_4=(\left(-1,\,0,\,2,\,1,\,3,\,2\right),)\) and \(v_5=(\left(-2,\,-2,\,4,\,2,\,7,\,5\right),)
\text{.}\) Find the linear span of \(B=\{v_1,v_2,v_3,v_4,v_5\}\text{.}\) Check of \(B\) is a linearly independent set.